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Abstract

This paper presents the results from the adaptive estimator developed to estimate time-dependent boundary heat flux in two-dimen-
sional heat conduction domain with heated and insulated walls. For the estimation, the algorithm requires only the temperatures mea-
sured at the insulated walls. In addition, the estimator also predicts the bias in the measurements. In modeling the system, it is assumed
that the input flux and bias sequence dynamics can be modeled by a semi-Markov process. By incorporating the semi-Markovian concept
into a Bayesian estimation technique, the estimator consists of a bank of parallel, adaptively weighted, Kalman filters. Computer sim-
ulation results reveal that the proposed adaptive estimator has improved estimation performance even for step changing heat flux and
measurement bias.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The inverse heat conduction problem (IHCP) has
received much attention in recent years since it has been
widely used in practical engineering problems involving
the estimation of surface conditions or initial conditions
as well as thermal properties of a body from known infor-
mation like temperatures measured at the prescribed posi-
tions. There exist many methods to solve the IHCP and the
majority of researchers use the approaches where the
unknowns are determined to minimize the sum of squares
of the differences between the measured and the computed
temperatures at the selected spatial and/or temporal points
(refer to Kim et al. [1]). In general, the approaches adopt
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the iterative scheme and the regularizations are imple-
mented to mitigate the ill-posedness of IHCP.

The Kalman filter estimation method is successfully
used in predicting one-dimensional, two-dimensional, mul-
tidimensional and nonlinear IHCP. There have been
attempts to solve one-dimensional inverse heat transfer
problems by Scarpa and Milano [2] and Kaipio and Som-
ersalo [3]. In recent years, many applications appeared in
which Kalman filter has been used in conjunction with
recursive-least square algorithm (RLSA), for example the
work of Tuan et al. [4–11], deals with one-dimensional
and two-dimensional problems. Extending that work,
recently, Jang et al. [12] has attempted to use a RLSA
based on the Kalman filter to estimate the boundary heat
flux varying impulsively with time by employing the
finite-element scheme instead of finite-difference scheme
[4] to discretize the problem in space, allowing multidimen-
sional problems of various geometries to be treated. For
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Nomenclature

c0 uniform initial temperature
C scale factor
H measurement matrix
I identity matrix
k time(discretized)
K Kalman gain
Kb gain
M, N total number of spatial nodes
O, P number of filters
Pe filter’s error covariance matrix
Pb error covariance matrix
q heat flux
q(i) discrete range of heat flux
Q process noise covariance matrix
Qb input flux covariance matrix
R measurement noise covariance matrix
Rb measurement bias covariance matrix
t time
tf final time
T temperature
Dt sampling interval
w process noise vector
W weight matrix
x; y dimensionless axial coordinate

xs; ys measurement location
X state vector
Z observation vector
C input matrix
d Kronecker delta
t measurement noise vector
t(j) discrete range for measurement bias
tb measurement bias
o null matrix
r standard deviation
U state transition matrix
w1;w2;w3 submatrices of W
W coefficient matrix
x1;x2 submatrices of X
X coefficient matrix
hq Markov transition matrix for heat flux
ht Markov transition matrix for measurement bias
a first-order low-pass filter parameter
^ estimated
– estimated by filter
T transpose of a matrix
a; b indices
i; j indices
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higher dimension problems, the straight forward imple-
mentation of the Kalman filter becomes difficult as the size
of covariance equation increases. Therefore, one of the
most important prerequisites for the successful implemen-
tation of a Kalman filter for the purpose of real-time esti-
mation is the development of a reliable low dimensional
model, hence, dimension reduction techniques like Karh-
unen–Loéve Galerkin procedure is used with Kalman filter
by Park and Jung [13] for solving multidimensional heat
conduction problems. For the case of nonlinear IHCP,
extended version of discrete Kalman filter have been used
by Daouas and Radhouani [14,15] to nonlinear IHCP to
estimate surface heat flux density.

It is noteworthy that Tuan et al. [4] developed a RLSA
based on the Kalman filter for two-dimensional IHCP to
estimate the boundary heat flux varying impulsively with
time. Their approach gives good estimates for estimating
unknown heat sources or heat flux inputs on the bound-
aries. In some of their papers [7,8], they have proposed
improvement in Kalman filter with RLSA approach by
having RLSA weighted by forgetting factor to robustly
extract the unknowns. The maximum likelihood type esti-
mator (M-estimator) combined with Huber psi-function
is used to construct the weighting forgetting factor. In
the context of forgetting factor, Wang et al. [16] proposed
extended Kalman filter with RLSA weighted by forgetting
factor to estimate nonlinear heat conduction problems.
However sometimes in real situations, in addition to
measurement noise, the sensors might also have sensor bias
i.e., it is known that the environment around the measure-
ment devices may introduce an unknown bias term in the
measurement sequence or failures in system measurement
instrumentation may randomly occur. Scarpa and Milano
[17] considers the effect of random noises superposed onto
the measurement signals, the bias arising from the calibra-
tion of sensors for the IHCP. They conceive the calibration
process as an integral part of the experiment to quantify
the effect of the bias to obtain the better estimates. Because
of the presence of sensor bias, the input estimation with
RLSA algorithm does not seem to converge well to the true
estimates and hence one must resort to alternatives, for
instance, Bayesian computation technique. The Bayesian
computational technique has many advantages as it is able
to quantify system uncertainty and random data error, to
derive a probabilistic description of the inverse solution,
to provide extensive spatial/temporal regularization to
the ill-posedness of the inverse problem, and to allow adap-
tive sequential estimation. Wang and Zabaras in [18–21]
developed a computational framework that integrates
computational mathematics, Bayesian statistics, statistical
computation, and reduced-order modeling to address
data-driven inverse heat and mass transfer problems.

In the context of measurement sensor bias, the present
work addresses an adaptive state estimator based on
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Kalman filter to estimate the temporal heat flux of a two-
dimensional heat conduction medium using the measured
temperatures from two sensors. In modeling the system,
it is assumed that the input flux and bias sequence dynam-
ics can be modeled by a semi-Markov process. The adap-
tive state estimator (ASE) is based on Moose et al. [22] in
which they developed an adaptive state estimator for pas-
sive underwater tracking of maneuvering targets. The
resulting adaptive estimator is an on-line estimator which
Fig. 1. Two-dimensional inverse heat

Fig. 2. Block diagram of
estimates temperature distribution, input heat flux and
the measurement bias together when the new measure-
ments become available and hence like other Kalman-type
filters, it does not require the saving of prior measurements.
It is worth mentioning here that Kim et al. [23] has applied
ASE based on Moose et al. [24] to one-dimensional IHCP
for estimation of input heat flux. Extending that work and
considering measurement bias into account, we have
focused our research on a typical two-dimensional heat
conduction problem considered.

adaptive estimator.
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conduction problem. This study shows that ASE consisting
of Kalman filters connected in parallel gives good perfor-
mance in the presence of measurement bias. Each filter
has its operating bound limiting the range of the unknown
input heat flux and measurement bias.
2. Problem formulation

Let us consider a two-dimensional rectangular region,
0 6 x 6 xs, 0 6 y 6 ys, initially at temperature T ðx; y; 0Þ.
For times t > 0 the boundaries at x ¼ xs and y = 0 are kept
insulated, the temperature measurements Z1ðtÞ and Z2ðtÞ
are known, and we need to estimate two input heat fluxes
q1ðtÞ and q2ðtÞ acting on the surface x = 0 and y ¼ ys,
respectively. Fig. 1 illustrates the heat conduction problem
considered along with boundary and initial conditions. The
governing equations in dimensionless form are given by

oT
ot
¼ o2T

ox2
þ o2T

oy2
0 6 x 6 xs; 0 6 y 6 ys ð1Þ

T ðx; y; 0Þ ¼ c0 0 6 x 6 xs; 0 6 y 6 ys ð2Þ
oT
ox
¼ �q1ðtÞ x ¼ 0; 0 6 y 6 ys; t > 0 ð3Þ

oT
oy
¼ 0 0 6 x 6 xs; y ¼ 0; t > 0 ð4Þ
Fig. 3. Reconstructed heat fluxes and measurement biases for scenario 1. P
a ¼ 0:7, hði;iÞ ¼ 0:95, and Peð�1 j �1Þ ¼ 1010I25.
oT
ox
¼ 0 x ¼ xs; 0 6 y 6 ys; t > 0 ð5Þ

oT
oy
¼ �q2ðtÞ 0 6 x 6 xs; y ¼ ys; t > 0 ð6Þ

Z1ðtÞ ¼ T xs;
1

2
ys; t

� �
þ t1ðtÞ x ¼ xs; y ¼ 1

2
ys; t > 0 ð7Þ

Z2ðtÞ ¼ T
1

2
xs; 0; t

� �
þ t2ðtÞ x ¼ 1

2
xs; y ¼ 0; t > 0; ð8Þ

where c0 is the uniform initial temperature, q1(t) and q2(t)
are the unknown heat flux inputs to be estimated, and
Z1(t) and Z2(t) are the noise-corrupted measurements, with
t1(t) and t2(t) being the measurement noises assumed zero
mean and white Gaussian. To formulate the relationship
between temperature and boundary condition, a central fi-
nite-difference approximation for the space derivative is
employed. Eq. (1) becomes

_T i;jðtÞ ¼
T iþ1;jðtÞ � 2T i;jðtÞ þ T i�1;jðtÞ

Dx2

þ T i;jþ1ðtÞ � 2T i;jðtÞ þ T i;j�1ðtÞ
Dy2

¼ 1

Dx2
T i�1;jðtÞ þ

1

Dy2
T i;j�1ðtÞ �

2

Dx2
þ 2

Dy2

� �
T i;jðtÞ

þ 1

Dy2
T i;jþ1ðtÞ þ

1

Dx2
T iþ1;jðtÞ ð9Þ
arameters are xs ¼ 0:5, ys ¼ 0:5, Dt ¼ 0:005, Qb ¼ 0:001I2, Rb ¼ 0:001I2,
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for i ¼ 1; . . . ; M � 2, j ¼ 1; . . . ;N � 2, and M ;N > 1,
where M and N are the total number of spatial nodes set
up by odd number for x and y directions, respectively,
and Dx ¼ xs=ðM � 1Þ and Dy ¼ ys=ðN � 1Þ are the space
intervals. Note that the system state notation is defined
as T i;jðtÞ ¼ T ðxi; yj; tÞ. At the boundary x ¼ 0; T�1;jðtÞ can
be solved by using Eq. (3) as

oT 0;jðtÞ
ox

¼ T 1;jðtÞ � T�1;jðtÞ
2Dx

¼ �q1ðtÞ ð10Þ

yielding

T�1;jðtÞ ¼ T 1;jðtÞ þ 2Dxq1ðtÞ ð11Þ

Similarly, at the boundary at y = 0, x ¼ xs and y ¼ ys can
be solved by using Eqs. (4) and (5), respectively, to get

T i;�1ðtÞ ¼ T i;1ðtÞ ð12Þ
T M ;jðtÞ ¼ T M�2;jðtÞ ð13Þ
T i;N ðtÞ ¼ T i;N�2ðtÞ þ 2Dyq2ðtÞ ð14Þ

From Eqs. (12)–(14) and associated with fictitious process
noise inputs [26], the continuous-time state equation can
be written as

_T ðtÞ ¼ WT ðtÞ þ X½qðtÞ þ wðtÞ�; ð15Þ
Fig. 4. Reconstructed heat fluxes and measurement biases for scenario 1. P
a ¼ 0:7, hði;iÞ ¼ 0:95, and Peð�1j�1Þ ¼ 1010I25.
where w(t) is the process noise. This additional term repre-
sents the cumulative effects of uncertainty caused by mod-
eling errors [27]. Moreover, the state vector T ðtÞ 2 RðM�NÞ�1

is given by

T ðtÞ ¼ ½T 0ðtÞT 1ðtÞ � � � T M�2ðtÞT M�1ðtÞ�T ð16Þ

where

T 0ðtÞ ¼ ½T 0;0ðtÞT 0;1ðtÞ � � � T 0;N�2ðtÞT 0;N�1ðtÞ
T 1ðtÞ ¼ ½T 1;0ðtÞT 1;1ðtÞ � � � T 1;N�2ðtÞT 1;N�1ðtÞ

..

.

T M�1ðtÞ ¼ ½T M�1;0ðtÞT M�1;1ðtÞ � � � T M�1;N�2ðtÞT M�1;N�1ðtÞ
ð17Þ

The coefficient matrix W 2 RðM�NÞ�ðM�NÞ is given by

W ¼

w1 w3 o o o � � � o

w2 w1 w2 o o � � � o

o w2 w1 w2 o � � � o

..

. . .
. ..

.

o � � � o w2 w1 w2 o

o � � � o o w2 w1 w2

o � � � o o o w3 w1

26666666666664

37777777777775
ð18Þ
arameters are xs ¼ 0:5, ys ¼ 0:5, Dt ¼ 0:005, Qb ¼ 0:001I2, Rb ¼ 0:001I2,
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in which

w1¼

� 2
Dx2þ 2

Dy2

� �
2

Dy2 0 � � � 0

1
Dy2 � 2

Dx2þ 2
Dy2

� �
1

Dy2 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � 1
Dy2 � 2

Dx2þ 2
Dy2

� �
1

Dy2

0 � � � 0 2
Dy2 � 2

Dx2þ 2
Dy2

� �

2666666666664

3777777777775

w2¼

1
Dx2 0 0 � � � 0

0 1
Dx2 0 0

..

. . .
. ..

.

0 � � � 0 1
Dx2 0

0 � � � 0 0 1
Dx2

266666664

377777775
; w3¼ 2w2

ð19Þ

The submatrices w1, w2, w3 and o are RN�N , where o is a
null submatrix. The input matrix X 2 RðM�NÞ�2 is given by

X ¼

x1

x2

x2

..

.

x2

26666664

37777775 ð20Þ
Fig. 5. Reconstructed heat fluxes and measurement biases for scenario 1. P
a ¼ 0:7, hði;iÞ ¼ 0:95, and Peð�1j� 1Þ ¼ 1010I25.
where both the submatrices x1 and x2 are RN�2, given by

x1 ¼

2
Dx 0
2
Dx 0

..

. ..
.

2
Dx 0
2
Dx

2
Dy

266666664

377777775
and x2 ¼

0 0

0 0

..

. ..
.

0 0

0 2
Dy

266666664

377777775
ð21Þ

The input matrix qðtÞ 2 R2�1 is given by

qðtÞ ¼ q1ðtÞ q2ðtÞ½ �T ð22Þ

The state Eq. (15) discretized over time intervals of length
Dt is given by

X ðk þ 1Þ ¼ UX ðkÞ þ C½qðkÞ þ wðkÞ�; ð23Þ

where

X ðkÞ ¼ ½T 0ðkÞT 1ðkÞ � � � T M�2ðkÞT M�1ðkÞ�T

T 0ðkÞ ¼ ½T 0;0ðkÞT 0;1ðkÞ � � � T 0;N�2ðkÞT 0;N�1ðkÞ�
T 1ðkÞ ¼ ½T 1;0ðkÞT 1;1ðkÞ � � � T 1;N�2ðkÞT 1;N�1ðkÞ�

..

.

T M�1ðkÞ ¼ ½T M�1;0ðkÞT M�1;1ðkÞ � � � T M�1;N�2ðkÞT M�1;N�1ðkÞ�;
arameters are xs ¼ 0:5, ys ¼ 0:5, Dt ¼ 0:005, Qb ¼ 0:001I2, Rb ¼ 0:001I2,
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U ¼ eWDt

C ¼
Z ðkþ1ÞDT

kDT
expfW½ðk þ 1ÞDT � s�gXds

and

qðkÞ ¼ q1ðkÞ q2ðkÞ½ �T ð24Þ

Here X ðkÞ represents the state vector, U is the state transi-
tion matrix, C is the input matrix, qðkÞ is the sequence of
deterministic input, and wðkÞ is the process noise vector, as-
sumed to be zero mean and white Gaussian with variance
EfwðkÞwT ðjÞg ¼ Qdkj and dkj is a Kronecker delta. Using
Eqs. (6) and (7) and referring back to Fig. 1, the measure-
ment equation becomes

Z1ðkÞ ¼ T M�1;ðN�1Þ=2ðkÞ þ t1ðkÞ ð25Þ
Z2ðkÞ ¼ T ðM�1Þ=2;0ðkÞ þ t2ðkÞ ð26Þ

or, in matrix form,

ZðkÞ ¼ HX ðkÞ þ tðkÞ; ð27Þ

where the observation vector ZðkÞ ¼ ½Z1ðkÞZ2ðkÞ�T, the
measurement noise vector tðkÞ ¼ ½t1ðkÞt2ðkÞ�T, and the
measurement matrix H is given by R2�ðM�NÞ. The tðkÞ is
the measurement noise vector, assumed to be zero mean
and white Gaussian. The variance of tðkÞ is given by
Fig. 6. Reconstructed heat fluxes and measurement biases for scenario 2. P
a ¼ 0:7, hði;iÞ ¼ 0:95, and Peð�1j�1Þ ¼ 1010I25.
EftðkÞtT ðjÞg ¼ Rdkj ¼
r2

1 0

0 r2
2

" #
dkj; ð28Þ

where the matrix elements r1 and r2 represent the standard
deviation of measurement noise for t1ðkÞ and t2ðkÞ,
respectively.

3. Adaptive state estimation with unknown input heat flux

and measurement bias

In this section the Bayesian state estimation technique is
employed for IHCP which has unknown input flux, and
whose measurement sequence is corrupted with an
unknown randomly switching bias in addition to white
Gaussian noise. In this formulation, the input flux and bias
terms are modeled as a semi-Markov process. The system
analysis of semi-Markov processes is covered in depth by
Howard [25]. Basically, a semi-Markov process is a discrete
Markov process with finite number of states, and the time
the plant spends in each state is a random variable.

We take the state equation as described in Eq. (23). The
contaminated measurement equation is described as

Zðk þ 1Þ ¼ HX ðk þ 1Þ þ tðk þ 1Þ þ tbðk þ 1Þ; ð29Þ

where tbðk þ 1Þ is the measurement bias vector. Both qðkÞ
and tbðk þ 1Þ are governed by independent semi-Markov
arameters are xs ¼ 0:5, ys ¼ 0:5, Dt ¼ 0:005, Qb ¼ 0:001I2, Rb ¼ 0:001I2,
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processes. It is assumed that the input and bias vectors can
independently take on any of the possible discrete vectors
fqð1Þ; . . . ; qðO

2Þg and ftð1Þ; . . . ; tðP
2Þg for a random duration

of time before a transition to a new bias occurs. Here O

represents the possible discrete values of each input heat
flux q1 and q2 and P represents the possible discrete values
of each measurement bias tb1 and tb2, respectively. And
hence the possible combinations of q1 and q2 are O2 and
for tb1 and tb2 are P2, respectively. The range of vectors
qðiÞ ði ¼ 1; . . . ; O2Þ and tðjÞ ðj ¼ 1; . . . ; P 2Þ are modeled such
that they span the entire possible ranges of qðkÞ and
tbðk þ 1Þ. The optimal estimate of the state vector can be
derived from the conditional mean by applying Bayesian
conditional probability theory. The derivation of ASE is gi-
ven in [22] and the required state estimator equations are
given as
X̂ ðk þ 1Þ ¼
XO2

i

XP 2

j

X̂ ðk þ 1Þði;jÞW ðk þ 1Þði;jÞ ð30Þ

q̂ðk þ 1Þ ¼
XO2

i

XP 2

j

qðiÞW ðk þ 1Þði;jÞ ð31Þ

t̂bðk þ 1Þ ¼
XO2

i

XP 2

j

tðjÞW ðk þ 1Þði;jÞ; ð32Þ
Fig. 7. Reconstructed heat fluxes and measurement biases for scenario 2. P
a ¼ 0:7, hði;iÞ ¼ 0:95, and Peð�1j�1Þ ¼ 1010I25.
where

X̂ ðk þ 1Þði;jÞ ¼ UX̂ ðkÞði;jÞ þ CqðiÞ þ Kðk þ 1Þ

� Zðk þ 1Þ � tðjÞ � HUX̂ ðkÞði;jÞ � HCqðiÞ
h i

ð33Þ

and

Mðk þ 1Þ ¼ UPeðkÞUT þ CðQþ QbÞCT ð34Þ
Kðk þ 1Þ ¼ Mðk þ 1ÞHT ½HMðk þ 1ÞHT þ Rþ Rb��1 ð35Þ
Peðk þ 1Þ ¼ ½I � Kðk þ 1ÞH �Mðk þ 1Þ ð36Þ

and

W ðk þ 1Þði;jÞ ¼ Cðk þ 1Þe�qij
XO2

a¼1

XP 2

b¼1

hða;iÞq hðb;jÞt W ðkÞða;bÞ;

ð37Þ

where

qij ¼
1

2
Zðk þ 1Þ � �zði;jÞ
� �T½Qz�

�1ðZðk þ 1Þ � �zði;jÞÞ ð38Þ

with

�zði;jÞ ¼ HUX̂ ðkÞði;jÞ þ HCqðiÞ þ tðjÞ ð39Þ
Qz ¼ HMðk þ 1ÞH T þ Rþ Rb ð40Þ
arameters are xs ¼ 0:5, ys ¼ 0:5, Dt ¼ 0:005, Qb ¼ 0:001I2, Rb ¼ 0:001I2,
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In Eq. (30), X̂ ðk þ 1Þði;jÞ is the conditional estimate of
X ðk þ 1Þ given that qðk þ 1Þ ¼ qðiÞ and tbðk þ 1Þ ¼ tðjÞ

which is weighted by the probability W ðk þ 1Þði;jÞ. This
probability is obtained from Eq. (37) where hða;iÞq and hðb;jÞt

are the elements of Markov transition matrices. Cðk þ 1Þ
is the scale factor which is determined at each iteration
such that

PO2

i¼1

PP 2

j¼1W ðk þ 1Þði;jÞ ¼ 1. Also, the covariance
matrices Rb and Qb compensate for additional uncertain-
ties in the sense that tbðk þ 1Þðqðk þ 1ÞÞ may be between
t(j) and tðjþ1ÞðqðiÞÞ and ðqðiþ1ÞÞ.

The block diagram of ASE is shown in Fig. 2. When the
new measurement vector Zðk þ 1Þ is available, the Kalman
gain and covariance matrices, Eqs. (34)–(36), are computed
first and are provided to different filters. Each filter differs
by q(i) and t(j). A total of O2 � P 2 filters exist. Each filter
then calculates X̂ ðk þ 1Þði;jÞ based on the predefined values
of q(i) and t(j). Next, weight matrix W ðk þ 1Þði;jÞ is calcu-
lated based on the supplied measurement vector Zðk þ 1Þ,
previously calculated weights and supplied Markov transi-
tion matrices (Eqs. (37)–(40)). Finally, Eqs. (30)–(34) are
used to give estimates of X̂ ðk þ 1Þ, q̂ðk þ 1Þ and t̂bðk þ 1Þ.

4. Simulations

The estimation performance of the proposed algorithm
is evaluated by computer simulations by considering differ-
Fig. 8. Reconstructed heat fluxes and measurement biases for scenario 2. P
a ¼ 0:7, hði;iÞ ¼ 0:95, and Peð�1j�1Þ ¼ 1010I25.
ent types of heat fluxes and measurement biases. The coef-
ficients U and C of the system model, for M = 5 and N = 5
in Eq. (23) are R25�25 and R25�2, respectively. The measure-
ment matrix H in Eq. (27) is R2�25. For the verification of
the proposed algorithm, we have performed simulations on
two scenarios. The unknown heat fluxes q1ðtÞ and q2ðtÞ
which represent sudden onset and time-varying inputs,
are modeled by a sequence of square and sinusoidal wave
and a sequence of staggering square waves with different
magnitudes. The time-varying unknown measurement
biases t1ðtÞ and t2ðtÞ are modeled by a sequence of square
waves.

In the first scenario, the settings and parameters are
given as

q1ðtÞ ¼
0 0 6 t < 3; 7 < t < 10; 14 < t 6 tf

0:5 3 6 t 6 7

0:75 10 6 t 6 14

8><>:
q2ðtÞ ¼

0 0 6 t < 4; 8 6 t < 10; 13 < t 6 tf

0:5 4 6 t < 8

0:75 10 6 t 6 13

8><>:
tb1ðtÞ ¼

0 0 6 t 6 2:5

2 2:5 < t 6 11

�2 11 < t 6 tf

8><>:
arameters are xs ¼ 0:5, ys ¼ 0:5, Dt ¼ 0:005, Qb ¼ 0:001I2, Rb ¼ 0:001I2,
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tb2ðtÞ ¼
0 0 6 t 6 2:5

�2 2:5 < t 6 11

2 11 < t 6 tf

8><>:
In the scenario 2, the settings and parameters are given as

q1ðtÞ¼
0 06 t< 3;7< t< 10;14< t6 tf

0:5 36 t6 7

0:5½1þ sinlðt�10Þ� 106 t6 14

8><>:
q2ðtÞ¼

0 06 t< 3;6< t< 9;12< t6 tf

0:25 36 t6 6

1 96 t6 12

8><>:
tb1ðtÞ¼

0 06 t6 2:5

2 2:5< t6 11

�2 11< t6 tf

8><>:
tb2ðtÞ¼

0 06 t6 2:5

�2 2:5< t6 11

2 11< t6 tf

8><>:
In all the simulations, the sensor locations are ðxs

2
; 0Þ and

ðxs;
ys

2
Þ, l ¼ 1:2, t ¼ kDt and final time tf ¼ 16.

In the ASE, it is assumed that the initial values for the
weighting terms are all equal, i.e., W ð0Þði;jÞ ¼ 1O2�P 2 . The
values of the Markov transition matrices, assumed as
Fig. 9. Reconstructed heat fluxes and measurement biases for scenario 1.
Rb ¼ 0:001I2, a ¼ 0:7, hði;iÞ ¼ 0:95, and Peð�1j�1Þ ¼ 1010I25.
hði;jÞq ¼ ð1� 0:95Þ
ð1� O2Þ

; ði 6¼ jÞ

hðiiÞq ¼ 0:95

hði;jÞt ¼ ð1� 0:95Þ
ð1� P 2Þ

; ði 6¼ jÞ

hðiiÞt ¼ 0:95

based on Moose et al. [22,24], were used in most of the sim-
ulations. In the simulations, we have assumed hði;iÞq ¼
hði;iÞt ¼ hði;iÞ, i.e., the diagonals of Markov transition matri-
ces are similar for both input heat fluxes and measurement
sensor biases.

Also, in order to reduce the effect of noise on the
weighting terms, a first-order low-pass filter was used
as W ðk þ 1Þði;jÞ ¼ ðaÞW ðkÞði;jÞ þ ð1� aÞ eW ðkÞði;jÞ, whereeW ðkÞði;jÞ are the weights as calculated from Eq. (37). The
range of q(i) for both input heat fluxes is f0; 0:25;
0:5; 0:75; 1; 1:25g and the range of t(j) for both sensor biases
is f�2; 0; 2g, i.e., O = 6 and P = 3, respectively.

The simulation results with variation of process and
measurement noise for both scenarios are shown in Figs.
3–8. The process and measurement noises of standard devi-
ations 0.1, 0.03 and 0.01 are considered. In scenario 2, the
heat flux q1 consists of a square wave and a sinosidal wave
whereas the heat flux q2 consists of two square waves. The
Parameters are Dt ¼ 0:01, Q ¼ ð0:01Þ2I2, R ¼ ð0:01Þ2I25, Qb ¼ 0:001I2,
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reason behind taking the sinosidal wave is that since q and
tb can take on O2 and P2 possible discrete values, therefore,
if the values lie between q(i) and qðiþ1Þ and t(j) and tðjþ1Þ,
respectively, then ASE should be able to estimate well
between these ranges. In the context of scenario 1 notice
abrupt changes at time steps t ¼ 2:5; 3; 4; 7; 8; 10; 11; 13; 14
for true values of input heat fluxes and measurement sensor
biases. These are the trouble points at which some unex-
pected peaks are prominent for reconstruction results of
input heat fluxes. Since the state estimation, input heat flux
estimation and measurement sensor bias estimation all
depend on the single weight matrix, therefore, when there
is a sudden and abrupt shift in the values, the estimator
needs a little time to converge. Hence, interdependence in
estimation of different variables leads to unwanted peaks
when there are abrupt changes. The same phenomenon
can be observed for scenario 2 at time steps t ¼ 2:5; 3; 6;
7; 9; 10; 11; 12. By extensive simulations, we reached the
conclusion that at least one of the unknowns will be esti-
mated better than the others when using ASE, hence in
the simulations, the measurement sensor biases were esti-
mated well i.e., the estimated values are nearly similar to
true values whereas the input heat fluxes estimation show
some discrepancies between the estimated and true values.
It should also be noted that the estimation performance is
affected more by higher process and measurement noise
Fig. 10. Reconstructed heat fluxes and measurement biases for scenario 1. Pa
Rb ¼ 0:001I2, a ¼ 0:7, hði;iÞ ¼ 0:95, and Peð�1j�1Þ ¼ 1010I25.
levels and so in Figs. 3–8 when the standard deviation of
process and measurement noise is 0.1, many fluctuations
can be observed in the estimated heat fluxes. However,
the performance improves when the process and measure-
ment noise is reduced, i.e., with standard deviation of
0.03 and 0.01, respectively.

The ASE is an online estimator and the estimated heat
flux may present some time lag which is dependent on
the size of the region and location of the measurement sen-
sor. Fig. 9 shows the reconstruction results with different
region sizes. It can be noticed that with a smaller region,
i.e., when xs ¼ 0:25; ys ¼ 0:25, the lag is smaller in compar-
ison to the region with larger size, i.e., when xs ¼ 1; ys ¼ 1.
To see the effect of sampling time on the stability of the
algorithm, the reconstruction results with varying sampling
times are shown in Fig. 10. Here, it should be noted that
for a big sampling time, the online estimator has a big tran-
sient period in the start, for example, when Dt ¼ 0:1. For
Dt ¼ 0:001, the transient period is significantly small. It
can also be noticed that with a very small sampling time,
on the average, the estimation performance is better, how-
ever, the unwanted peaks can also be observed, for exam-
ple, with Dt ¼ 0:001 and Dt ¼ 0:005. Facing the same
problem, Moose et al. [22] suggested to use the first-order
low-pass filter to reduce the effect of noise on the weight
matrix. By incorporating the first-order low-pass filter,
rameters are xs ¼ 0:5, ys ¼ 0:5, Q ¼ ð0:1Þ2I2, R ¼ ð0:01Þ2I25, Qb ¼ 0:001I2,
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we are able to reduce the duration of peaks to certain
extent. The reconstruction results with different values of
a for the low-pass filter are shown in Fig. 11. It is observed
that with the higher values of a, the peaks are smaller.
However, higher values of a also result in an increase in
the transient period in the start and introduce time lag.
In the considered scenarios, a ¼ 0:7 offers a good trade-
off between peak reduction and estimation performance.
An analysis of time lag has already been done by Scarpa
et al. [2] which introduces future time measurements in
Kalman algorithm. An extension of this technique to
include future measurements would be an interesting topic
for future research.

Finally, the effect of Markovian transition probabilities
are considered in Fig. 12. A higher value of hði;iÞ ¼ 0:95 for
both input heat fluxes and measurement biases gives opti-
mum performance. In ASE, the Kalman gain and the
required covariances for multiple filters are pre-calculated
and stored once per every iteration (measurement data
acquisition) to reduce the computational burden of ASE.
Summing up our findings, the performance of the ASE
depends heavily on the

� process noise, measurement noise along with choice of
Qb and Rb.
Fig. 11. Reconstructed heat fluxes and measurement biases for scenario 1. Pa
Qb ¼ 0:001I2, Rb ¼ 0:001I2, hði;iÞ ¼ 0:95, and Peð�1j�1Þ ¼ 1010I25.
� changes in the input heat flux and measurement sensor
bias between subsequent iterations whether the changes
are abrupt changes or smooth changes.
� the number of filters used, i.e., range of q and tb.
� the number of unknowns to be estimated. Since all the

estimates depend on a single weight matrix, therefore,
with less unknown, the results are going to be more
accurate.
� the Markov transition matrix used to specify the proba-

bility measure given to each filter.
� first-order low-pass filter used to reduce the effect of

noise on weight matrix for reduction of unwanted peaks.
5. Conclusions

In this paper, we have presented adaptive state estimator
for the estimation of input heat flux and measurement sen-
sor bias in two-dimensional inverse heat conduction prob-
lems. The algorithm is implemented by a parallel bank of
Kalman-type estimators, each matched to a set of different
possible input fluxes and biases. The measurement
sequence, after being processed in each filter, is weighted
according to a specific probability measure, and then
summed to give a final estimate of the state, the input heat
flux and the measurement bias. Simulations for the system
rameters are xs ¼ 0:5, ys ¼ 0:5, Dt ¼ 0:005, Q ¼ ð0:01Þ2I2, R ¼ ð0:01Þ2I25,



Fig. 12. Reconstructed heat fluxes and measurement biases for scenario 1. Parameters are xs ¼ 0:5, ys ¼ 0:5, Dt ¼ 0:005, Q ¼ ð0:01Þ2I2, R ¼ ð0:01Þ2I25,
Qb ¼ 0:001I2, Rb ¼ 0:001I2, a ¼ 0:7, and Peð�1j�1Þ ¼ 1010I25.
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was presented under different scenarios to test the compat-
ibility of the proposed algorithm.
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